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ABSTRACT 
This paper presents a summary of the important middle school findings from the LieCal Project 
(Longitudinal Investigation of the Effect of Curriculum on Algebra Learning) and examines in detail 
the longitudinal effects of a middle school reform mathematics curriculum on students’ open-ended 
problem solving in high school. Using assessment data from our large, longitudinal LieCal project, we 
compared the open-ended problem-solving performance and strategy use of high school students who 
had used the Connected Mathematics Project (CMP) in middle school with that of students who had 
used more traditional mathematics curricula. When controlling for sixth-grade state mathematics test 
performance, high school students who had used CMP in middle school had significantly higher 
scores on a multipart open-ended problem. In addition, high school students who had used CMP 
appeared to have greater success algebraically abstracting the relationship in the task. 
 
Key Words:  LieCal Project, Problem Solving, Curriculum Effect, Student Learning 
 

 

RESUMO 
Este artigo apresenta um resumo de importantes resultados relativos aos Anos Finais do Ensino 
Fundamental, obtidos a partir do projeto LieCal (Longitudinal Investigation of the Effect of 
Curriculum on Algebra Learning19) e examina, detalhadamente, os efeitos longitudinais que essa 
reforma do currículo de Matemática, neste nível de ensino, provoca nos estudantes do Ensino Médio, 
ao trabalharem com problemas abertos. Utilizar dados de avaliação deste amplo projeto longitudinal - 
LieCal, comparamos o desempenho e as estratégias utilizadas pelos alunos do Ensino Médio que 
tinham estudado Matemática através do CMP (Connected Mathematics Project20) nos Anos Finais do 
Ensino Fundamental com as de estudantes que vivenciaram um ensino de Matemática por meio de um 
currículo mais tradicional. Os testes de performance aplicados indicam que, em relação a um grupo de 
controle de alunos de 6º. ano, alunos do Ensino Médio que já haviam vivenciado o CMP no Ensino 

                                                           
19  Pode ser traduzido como: Investigação longitudinal acerca dos efeitos do Currículo na aprendizagem de 
Álgebra. 
20 Projeto Matemática Conectada 
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Fundamental, apresentaram rendimento significantemente superior ao resolverem problemas abertos. 
Além disto, os alunos do Ensino Médio que haviam estudado matemática pelo CMP pareciam ter 
maior facilidade com as abstrações algébricas exigidas pelas tarefas. 
 
Palavras-chave: Projeto LieCal, Resolução de Problemas, Efeitos Curriculares, Aprendizagem. 
 

 

Introduction  
Curriculum is a key lever for influencing the quality of education (BALL; COHEN, 

1994; SENK; THOMPSON, 2003; VITHAL; VOLMINK, 2005). Therefore, educational 
researchers, practitioners, and policy-makers around the globe have sought to understand how 
to improve the curriculum and how to analyze the impact of curriculum reforms.  In the 
United States, the National Council of Teachers of Mathematics (NCTM) was an early leader 
in providing recommendations for reforming and improving K-12 school mathematics 
through its Standards documents (1989, 2000). Among many recommendations about the 
goals for mathematics education, these and related documents emphasized the importance of 
engaging students in problem solving in the mathematics classroom.  To make curricula that 
aligned with the NCTM standards available to teachers, the U.S. National Science Foundation 
(NSF) provided support to develop a number of so-called Standards-based school 
mathematics curricula for elementary, middle, and high school students. With the 
implementation of these curricula came the need to assess their effectiveness at achieving the 
goals set out in the various standards documents, including their effectiveness at helping 
students become effective mathematical problem solvers (see Senk; Thompson, 2003, for an 
overview of the assessments of the NSF-funded curricula).  

In this paper, we report on results from the Longitudinal Investigation of the Effect of 
Curriculum on Algebra Learning (LieCal). The LieCal Project sought to longitudinally 
investigate the effects of the Connected Mathematics Project (CMP), one of the NSF-funded 
Standards-based curricula.  The CMP curriculum is a complete middle-school mathematics 
program, and can be characterized as a problem-based curriculum whose intent is to build 
students’ understanding in the four mathematical strands of number and operations, geometry 
and measurement, data analysis and probability, and algebra through explorations of real-
world situations and problems (LAPPAN et al., 2002b). The LieCal project compared the 
effects of the CMP curriculum with those of traditional, non-CMP middle school mathematics 
curricula, both within the middle school grades and into high school. The present study 
examines the open-ended problem-solving performance and strategy use in high school of 
former CMP and non-CMP middle school students.  
 
 
Research on Mathematical Problem Solving 

There is a long history of interest in integrating problem solving into school 
mathematics (CAI; NIE, 2007; SIU, 2004; STANIC; KILPATRICK, 1989). Research in 
mathematics education has correspondingly attended to multiple aspects of mathematical 
problem solving and the ways in which problem solving can play a role in school 
mathematics, ranging from how students learn mathematics, to how teachers teach and assess 
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students’ learning of mathematics, to how mathematics is presented in curricula. Looking 
across the scholarship on mathematical problem solving, six interrelated lines of research 
stand out.   

The first line of research seeks to shed light on the processes involved in problem 
solving (e.g., FRENSCH; FUNKE, 1995; LESH; ZAWOJEWSKI, 2007; LESTER, 2013; 
MCLEOD; ADAMS, 1989; SCHOENFELD, 1992; SILVER, 1985).  Problem solving is 
inherently a complex process, and researchers working in this line of research have attended 
to diverse aspects of the problem solving process, notably affective, cognitive, and 
metacognitive aspects.  

The second line of problem-solving research focuses on the teaching of mathematical 
problem solving in classrooms (CAI, 2003, 2010; KROLL; MILLER, 1993; LESH; 
ZAWOJEWSKI, 2007; WILSON et al., 1993).  Researchers working in this area have 
investigated the teaching of mathematics with a focus on problem solving (e.g., HEMBREE; 
MARSH, 1993; HENNINGSON; STEIN, 1997; HIEBERT et al., 1997; KROLL; MILLER, 
1993; STEIN; SMITH; SILVER, 1999).  In this work, problem solving is viewed as a 
learning goal of school mathematics – the aim is to improve students’ success at solving 
problems. This type of teaching is usually called problem-solving instruction, and it has been 
studied extensively.  Cai (2010) and Lester and Cai (2016) have conducted reviews of 
research in this area.    

The third line of problem-solving research is also concerned with teaching, but differs 
from the previous line of research in that problem solving itself is not the learning goal. 
Rather, problem solving is a means for teaching mathematics (LESTER; CHARLES, 2003; 
SCHOEN; CHARLES, 2003; SCHROEDER; LESTER, 1989).  Compared to the research on 
problem-solving instruction, the line of research on teaching mathematics through problem 
solving focuses on a relatively new idea in the history of problem solving in the mathematics 
curriculum. Even though teaching mathematics through problem solving is a rather new 
conception, there is widespread agreement that teaching through problem solving holds great 
promise for fostering student learning (CAI, 2003).  

A fourth line of research on problem solving is related to problem posing, which has 
been recognized as a component of the problem-solving process (CAI; HWANG, 2002; CAI 
et al., 2013; CAI et al., 2015; SINGER; ELLERTON; CAI, 2015; SILVER, 1994). Although 
problem-posing research is a relatively new endeavor, it has prospered in recent years.  
Indeed, there have been efforts to incorporate problem posing into school mathematics at 
different educational levels around the world.   

A fifth line of mathematical problem-solving research is related to research on 
mathematical modeling, as the modeling process can be viewed as a specific kind of problem 
solving. Research on mathematical modeling has taken a number of perspectives, including 
mathematical, cognitive, curricular, instructional, and teacher education (e.g., CAI et al., 
2014).  

Finally, a sixth line of research on problem solving focuses on using both problem 
solving and problem posing for the assessment of students’ learning (e.g., CAI et al., 2013).  
The research reported here is of this type.  Studies of problem solving in mathematics 
education have already moved from a focus only on the product (i.e., the actual solution to the 
problem) to a focus on the process (i.e., the set of planning and executing activities that direct 
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the search for a solution). Individual differences in solving mathematical problems can 
sometimes be understood in terms of differences in students’ uses of various strategies. 
Proficiency in solving mathematical problems is dependent on the acquisition, selection, and 
application of both domain-specific strategies and general cognitive strategies 
(SCHOENFELD, 1992; SIMON, 1979). Thus, competence in using appropriate problem-
solving strategies reflects a high degree of performance and proficiency in mathematics. In 
fact, researchers have long used the examination of problem-solving strategies to assess and 
evaluate instructional programs and education systems (CAI, 1995; FENNEMA et al., 1998). 
Therefore, using problem solving to assess mathematics proficiency implies that effective 
problem-solving assessment tasks should be designed to reveal the various strategies that 
students employ. Moreover, students’ problem-solving strategies can become more effective 
over time. Therefore, both the examination of the strategies that students apply and the 
success of those applications can provide information regarding the developmental status of 
students’ mathematical thinking and reasoning. 

Whether problem solving is viewed as a process, a learning goal, an instructional 
approach, modeling, or a means of assessment, it is clear from the research that problem 
solving should be an integral part of mathematics learning, and a significant commitment 
should be made to include problem solving at every grade level and with every mathematical 
topic.  A review by Cai (2010) showed that teachers should engage students in a variety of 
problem-solving activities in order to help students become successful problem solvers and 
also learn mathematics better through: (1) finding multiple solution strategies for a given 
problem, (2) engaging in problem posing and mathematical exploration, (3) giving reasons for 
their solutions, and (4) making generalizations.  Cai’s review also showed that focusing on 
problem solving in the classroom not only impacts the development of students’ higher-order 
thinking skills, but also reinforces positive attitudes.   

Our findings, which are related to the sixth line of research about problem solving, 
come from the LieCal project’s longitudinal examination of the effect of CMP and non-CMP 
curricula on students’ mathematics learning. The purpose of the present study is to use 
problem solving as a measure to longitudinally examine the effect of a problem-based 
curriculum on students’ learning of mathematics.  More specifically, this study uses the 
examination of students’ problem solving strategies to investigate how the use of different 
types of middle school curricula affects the learning of high school mathematics for a large 
sample of students from ten high schools in an urban school district.   
 
The LieCal Project 
 
CMP and Non-CMP Curricula 

In examining and understanding the differential effects of the CMP and non-CMP 
curricula on students’ problem-solving performance and strategies, it is necessary to consider 
the ways in which these curricula diverge in their treatment of key algebraic concepts. An 
examination of the CMP and non-CMP curriculum materials show clear differences in this 
regard. In particular, the curricula make use of strikingly different conceptions about algebra – 
a functional approach in the CMP curriculum and a structural approach in the non-CMP 
curricula.  Below, we describe several examples that illustrate these different conceptions of 
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and approaches to algebra.  
 

Defining and introducing the concept of variables.   
Because of the central role of variables in algebra, the contrasting ways in which the 

CMP and non-CMP curricula introduce variable ideas are of particular note (NIE et al., 2009). 
The learning goals of the CMP curriculum characterize variables as the representations of 
quantities in relationships. Though the CMP curriculum does not formally define “variable” 
until 7th grade, CMP’s informal characterization of a variable as a quantity that changes or 
varies makes it convenient to use variables informally to describe relationships long before 
the formal introduction of the concept of variables in 7th grade. The choice to define variables 
in terms of quantities and relationships reflects the functional approach that the CMP 
curriculum takes.  

In contrast, the learning goals in the non-CMP curricula characterize variables as 
placeholders or unknowns. The non-CMP curricula formally define “variable” in 6th grade as 
a symbol (or letter) used to represent a number. Variables are treated predominantly as 
placeholders and are used to represent unknowns in expressions and equations. By 
introducing the concept of variables in this fashion, the non-CMP curricula support a 
structural approach to algebra. 

 
Defining and introducing the concept of equations.   

Given the functional approach to variables in the CMP curriculum and the structural 
approach in the non-CMP curricula, it is not surprising that the concept of equation is 
similarly defined functionally in CMP, but structurally in the non-CMP curricula. In CMP, 
equations are a natural extension of the development of the concept of variable as a 
changeable quantity used to represent relationships. At first, CMP expresses relationships 
between variables with graphs and tables of real-world quantities rather than with algebraic 
equations.  
Later, when CMP introduces equations, the emphasis is on using them to describe real-world 
situations. Rather than seeing equations simply as objects to manipulate, students learn that 
equations often describe relationships between varying quantities (variables) that arise from 
meaningful, contextualized situations (BEDNARZ; KIERAN; LEE, 1996). In the non-CMP 
curricula, the definition of a variable as a symbol develops naturally into the use of context-
free equations with the emphasis on procedures for solving equations. These are all hallmarks 
of a structural focus. For example, one non-CMP curriculum defines an equation as “…a 
sentence that contains an equals sign, =” illustrated by examples such as 2 x  9 , 4  k  6 , 

and 5m  4 . Students are then told that the way to solve an equation is to replace the 
variable with a value that results in a true sentence. 
 
Defining and introducing equation solving.  

 In line with their treatment of variables and equations, the means by which the CMP 
and non-CMP curricula introduce equation solving reflect functional and structural 
approaches, respectively. In the CMP curriculum, equation solving is introduced within the 
context of discussing linear relationships between quantities. The initial treatment of equation 
solving does not involve symbolic manipulation, as found in most traditional curricula. 
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Instead, the CMP curriculum introduces students to linear equation solving by using a graph 
to make visual sense of what it means to find a solution. Its premise is that a linear equation in 
one variable is, in essence, a specific instance of a corresponding linear relationship in two 
variables. It relies heavily on the context in which the equation itself is situated and on the use 
of a graphing calculator.  

After CMP introduces equation solving graphically, the symbolic method of solving 
linear equations is finally broached. It is introduced within a single contextualized example, 
where each of the steps in the equation-solving process is accompanied by a narrative that 
demonstrates the connection between what is happening in the procedure and in the real-life 
situation. In this way, CMP justifies the equation-solving manipulations through contextual 
sense-making of the symbolic method. That is, CMP uses real-life contexts to help students 
understand the meaning of each step of the symbolic method of equation solving, including 
why inverse operations are used. As with the introduction of variables and equations, CMP’s 
functional approach to equation solving maintains a focus on contextualized relationships 
among quantities.  Figure 1 below shows an example of equation solving in the CMP 
curriculum. 
 

The Unlimited Store allows any customer who buys merchandise costing over $30 to pay on the 
installment plan. The customer pays $30 down and then pays $15 a month until the item is paid 
for. Suppose you buy a $195 CD-ROM drive from the Unlimited Store on an installment plan, 
How many months will it take you to pay for the drive? Describe how you found your answer. 

Thinking Manipulating the Symbols 

“I want to buy a CD-ROM drive that costs $195. To pay for the drive on the 
installment plan, I must pay $30 down and $15 a month.”  

195 = 30 + 15N 

“After I pay the $30 down payment, I can subtract this from the cost. To keep 
the sides of the equation equal, I must subtract 30 from both sides  

195 – 30 = 30 – 30 + 15N 

“I now owe $165, which I will pay in monthly installments of $15.”  165 = 15N 

“I need to separate $165 into payments of $15. This means I need to divide it by 
15. To keep the sides of the equation equal, I must divide both sides by 15.”  

 

“There are 11 groups of $15 in $165, so it will take 11 months.”  11 = N 
 

Figure 1. 
An Example of Equation Solving in CMP (LAPPAN et al., 2002a, p. 55). 

 
In the non-CMP curricula, contextual sense-making is not used to justify the equation-

solving steps as it is in the CMP curriculum. Rather, the non-CMP curricula first introduce 
equation solving as the process of finding a number to make an equation a true statement. 
Specifically, solving an equation is described as replacing a variable with a value (called the 
solution) that makes the sentence true. Equation solving is introduced in the non-CMP 
curricula symbolically by using the additive property of equality (equality is maintained if the 
same quantity is added to or subtracted from both sides of an equation) and the multiplicative 
property of equality (equality is maintained if the same non-zero quantity is multiplied by or 
divided into both sides of an equation). This approach to equation solving is aligned with the 
non-CMP curricula’s structural focus on working abstractly with symbols and procedures. 

 

15

N15
=

15

165
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Cognitive demand of mathematical problems. 
 In the LieCal Project, the cognitive demand of mathematical problems in both the 

CMP curriculum and a representative non-CMP curriculum were analyzed (Cai, Nie, & 
Moyer, 2010). The problems were classified into four increasingly demanding categories of 
cognition: memorization, procedures without connections, procedures with connections, and 
doing mathematics (Stein & Lane, 1996). As Figure 2 illustrates, the CMP curriculum had 
significantly more high-level tasks (procedures with connections or doing mathematics) 

(2(3, N = 3311) = 759.52, p < .0001) than the non-CMP curricula.  This kind of analysis of 
the intended curriculum provides insight into the degree to which different curricula expect 
students to engage in higher-level thinking and problem solving.  
 

 
Figure 2.The percentage distributions of the cognitive demand of the instructional tasks intended in the 

CMP and non-CMP curricula. 
 

Instruction in CMP and Non-CMP Classrooms 
 In order to better understand how the differences in the CMP and non-CMP 
curriculum materials play out in actual classrooms, the LieCal Project collected data on 
multiple aspects of implementation based on 620 detailed lesson observations of CMP and 
non-CMP lessons over a three-year period. Approximately half of the observations were of 
teachers using the CMP curriculum, while the other half were observations of teachers using 
non-CMP curricula. Two retired mathematics teachers conducted and coded all the 
observations. The observers received extensive training that included frequent checks for 
reliability and validity throughout the three years (MOYER et al., 2011; NIE et al., 2013).   

Each class of LieCal students was observed four times, during two consecutive lessons 
in the fall and two in the spring. The observers recorded extensive information about each 
lesson using a 28-page project-developed observation instrument. During each observation, 
the observer made a minute-by-minute record of the lesson on a specially designed form. This 
record was used later to code the lesson. The coding system had three main components: 
(1) the structure of the lesson and use of materials, (2) the nature of the instruction, and (3) the 
analysis of the mathematical tasks used in the lesson. 

The analyses of the data obtained from the classroom observations revealed striking 
differences between classroom instruction using the CMP and non-CMP curricula. Below, we 
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briefly review the differences that were related to three important instructional variables that 
could have an impact on students’ problem-solving: (1) the level of conceptual and procedural 
emphases in the lessons, (2) the cognitive level of the instructional tasks implemented, and (3) 
the cognitive level of the assigned homework problems. 

 
Conceptual and procedural emphases. 

 The second component of the coding section included twenty-one 5-point Likert scale 
questions that the observers used to rate the nature of instruction in a lesson. Of the 21 
questions, four were designed to assess the extent to which a teacher’s lesson had a 
conceptual emphasis. Another four questions were designed to determine the extent to which 
the lesson had a procedural emphasis. Factor analysis of the LieCal observation data 
confirmed that the four procedural-emphasis questions loaded on a single factor, as did the 
four conceptual-emphasis questions. 

There was a significant difference across grade levels between the levels of conceptual 
emphasis in CMP and non-CMP instruction (F = 53.43, p < 0.001). The overall (grades 6-8) 
mean of the summated ratings of conceptual emphasis in CMP classrooms was 13.41, 
whereas the overall mean of the summated ratings of conceptual emphasis in non-CMP 
classrooms was 10.06. Since the summated ratings of conceptual emphasis were obtained by 
adding the ratings on the four items of the conceptual-emphasis factor in the classroom 
observation instrument, the mean rating on the conceptual-emphasis items was 3.35 (13.41/4) 
for CMP instruction and 2.52 (10.06/4) for non-CMP instruction. That is, CMP instruction 
was rated 0.40 points above the midpoint, whereas non-CMP instruction was rated 0.5 points 
below the midpoint. Thus, on average, CMP instruction was rated about 4/5 of a point higher 
(out of 5) on each conceptual emphasis item than non-CMP instruction, which was a 
significant difference (t = 11.44, p < 0.001).  

In contrast, non-CMP lessons had significantly more emphasis on the procedural 
aspects of learning than the CMP lessons. The procedural-emphasis ratings for the non-CMP 
lessons were significantly higher than the procedural-emphasis ratings for the CMP lessons (F 
= 37.77, p < 0.001). Also, the overall (grades 6-8) mean of summated ratings of procedural 
emphasis in non-CMP classrooms (14.49) was significantly greater than the overall mean of 
the summated ratings of procedural emphasis in CMP classrooms, which was 11.61 (t = -9.43, 
p < 0.001). Since the summated ratings of procedural emphasis were obtained by adding the 
ratings on the four items of the procedural-emphasis factor, the mean rating on the procedural 
emphasis items was 3.62 (14.49/4) for non-CMP instruction and 2.91 (11.61/4) for non-CMP 
instruction. On average, non-CMP instruction was rated about 7/10 of a point higher (out of 5) 
on each procedural emphasis item than CMP instruction, which was a significant difference.  

 
Instructional tasks.   

As was done (above) with the mathematical problems in the intended curricula, the 
scheme developed by Stein et al. (1996) was again used to classify the instructional tasks 
actually used in the CMP and non-CMP classrooms into four increasingly demanding 
categories of cognition: memorization, procedures without connections, procedures with 
connections, and doing mathematics. Figure 3 shows the percentage distributions of the 
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cognitive demand of the instructional tasks implemented in CMP and non-CMP classrooms 
(note that Figure 2 referred to problems from the intended, not the implemented, curricula).  

 

 
Figure 3.  

The percentage distributions of the cognitive demand of the instructional tasks implemented in the 
CMP and non-CMP classrooms 

 
The percentage distributions in CMP and non-CMP classrooms were significantly 

different (X2(3, N = 1318) = 219.45, p < .0001). The difference confirms that a larger 
percentage of high cognitive demand tasks (procedures with connection or doing 
mathematics) were implemented in CMP classrooms than were implemented in non-CMP 
classrooms (z = 14.12, p < .001). Moreover, a larger percentage of low cognitive demand 
tasks (procedures without connection or memorization) were implemented in non-CMP 
classrooms than were implemented in CMP classrooms. In addition, not only did CMP 
teachers implement a significantly higher percentage of cognitively demanding tasks than 
non-CMP teachers across the three grades, but also within each grade (z values range from 
6.06 – 11.28 across the three grade levels, p < .001).   

 
Student Achievement for CMP and Non-CMP Students 

In the LieCal Project, we have examined how the use of the CMP and non-CMP 
curricula have produced differing profiles of student mathematics performance. Looking 
within the middle school grade band, the LieCal Project found that on open-ended tasks 
assessing conceptual understanding and problem solving, the growth rate for CMP students 
over the three middle school years was significantly greater than that for non-CMP students 
(Cai et al., 2011).  At the same time, CMP and non-CMP students showed similar growth over 
the three middle school years on the multiple-choice tasks assessing computation and 
equation-solving skills. These findings suggest that the use of the CMP curriculum is 
associated with a significantly greater gain in conceptual understanding and problem solving 
than is associated with the use of the non-CMP curricula. However, those relatively greater 
conceptual gains do not come at the cost of lower basic skills, as evidenced by the comparable 
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results attained by CMP and non-CMP students on the computation and equation solving 
tasks. 
 The LieCal Project subsequently followed the students into their high school years.  
All high schools in the district are required to use the same district-adopted mathematics 
curriculum. CMP and non-CMP students were mixed into each class in each of ten high 
schools in the same district. Thus, all of the former CMP and non-CMP students used the 
same curriculum in high school and were taught by the same teachers in their high schools. As 
an extension of the results we found in the middle school years, we have been examining 
whether the superior problem-solving abilities gained by the CMP students in middle school 
result in better performance on a delayed assessment of mathematical problem solving in high 
school. 

In a previous study, we used problem posing as a measure of middle school curricular 
effect on students’ learning in high school (CAI et al., 2013). Using problem posing as a 
measure, we found that in high school, students who had used the CMP curriculum in middle 
school performed equally well or better than students who had used more traditional curricula. 
The findings from this previous study not only showed evidence of the strengths one might 
expect of students who used the CMP curriculum, but also demonstrated the usefulness of 
employing a qualitative rubric to assess different characteristics of students’ responses to the 
posing tasks. Moreover, given the potential role of problem posing within the problem-
solving process, this result suggests that the former CMP students might also continue to 
exhibit enhanced problem-solving strategies and performance in high school than their non-
CMP counterparts. Thus, in the present study we use open-ended problem-solving strategies 
as a measure to examine longitudinal curricular effect on students’ learning. 
 
Problem-Solving Strategies as a Measure of Longitudinal Curricular Effects on 
Students’ Learning 
 

 

Methods 
 
Participants 

In the LieCal Project, we followed more than 1,300 students (650 using CMP and 650 
using non-CMP curricula) from a school district in the United States for three years as they 
progressed through grades 6-8.  In the 2008-2009 school year, most of these 1,300 CMP and 
non-CMP students from the middle school study entered high schools as freshmen. We then 
followed the students enrolled in the 10 high schools that had the largest numbers of the 
original 1,300 CMP and non-CMP students. As noted above, the former CMP and non-CMP 
students were mixed into high school classes that used the same curriculum. 

 
Assessment Tasks and Analyses 

As part of the LieCal Project, we developed and used 13 open-ended tasks to assess 
students’ learning in high school, specifically the 11th and 12th grades. Students’ responses 
were analyzed in two ways.  The first was to quantitatively score each student response using 
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a previously-developed holistic scoring rubric. The second was to qualitatively analyze 
students’ responses with a focus on their solution strategies. In this paper, we mainly draw on 
results from an analysis of solution strategies to a pattern problem called the doorbell problem 
(see Appendix). This five-part task assesses students’ ability to find regularities of a pattern 
and make generalizations. We chose to report the results from this task because it is 
representative of the tasks we used to assess students’ generalization skills.  
 
Data Collection and Coding 

As part of the larger longitudinal study, we assessed 533 students (321 CMP and 212 
non-CMP) in the fall of 11th grade (Fall, 2010), spring of 11th grade (Spring, 2011), and spring 
of 12th grade (Spring, 2012). The data for the analyses of students’ strategies came mainly 
from the 12th grade spring assessment.  In a small number of cases, if a student did not 
participate in the Spring 2012 assessment but did participate in the Spring 2011 assessment, 
we used the data from the Spring 2011 assessment. If a student did not participate in either the 
Spring 2012 or Spring 2011 assessments, but had participated in the Fall 2010 assessment, we 
used the data from the Fall 2010 assessment. This allowed us to look at the students’ most 
recent attempt at each task.  

As noted above, students’ responses to the doorbell problem were first scored using a 
holistic scoring rubric that took into account the students’ numerical answers and their 
explanations of their strategies. The responses were then also qualitatively coded for the types 
of strategies used. We coded students’ solution strategies for parts A, B, C, and E as an 
abstract strategy, a concrete strategy, an unidentifiable strategy, or no strategy. Students who 
used an abstract strategy were able to recognize that the number of guests entering for each 
ring was equal to either two times the ring number minus one (i.e., y = 2n - 1) or the ring 
number plus the ring number minus one (i.e., y = n + (n - 1)). Students who used a concrete 
strategy were able to identify that the number of guests who enter increases by two for each 
doorbell ring and then sequentially adding two until they reached the desired number of rings, 
but did not abstract an algebraic formula. An unidentified solution strategy was a strategy that 
did not particularly make sense for the problem (e.g., y = [r(100) + 2] - 1). Lastly, a student 
was said to have used no strategy if the student did not show work for his or her answer, or if 
he or she did not attempt to answer the question at all. 

Students’ strategies for part D were coded in one of five ways. First, the student could 
have completely abstracted the algebraic formulas 2n - 1 or n + (n - 1).  Secondly, they could 
have completely abstracted the pattern in a verbal description (e.g. “The number of guests 
who entered on a particular ring of the doorbell equalled two times that ring number minus 
one.”). Third was an incomplete abstraction that only captured a recursive relationship, such 
as, “When the bell rings, two more people come.” Fourth was an unidentified strategy, which 
either represented the strategies for students who incorrectly answered the question or had a 
provided a strategy that did not make sense. Finally, a strategy was coded as “no strategy” if 
no attempt was made to solve the problem.  
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Results 

 
Overall Performance on the Doorbell Problem 

We first conducted analyses based on the quantitative scoring (using holistic scoring 
rubric that took into account the students’ numerical answers and their explanations of 
solution strategies) to student responses to the doorbell problem. The analyses indicated 
significant curriculum effects under two covariates for the doorbell problem. When 
controlling for overall state math test exam scores for 6th grade, CMP students scored 
significantly higher than non-CMP students on the doorbell problem (t = 2.09, p = 0.0371). 
When controlling for scores on the algebra subtest on the overall state math test for 6th grade, 
CMP students still scored significantly higher than non-CMP students (t = 2.47, p = 0.0141). 

 
Performance on Individual Parts of the Doorbell Problem 

Chi-squared tests were performed to look for relationships between curriculum and 
correctness of answers on each part of the doorbell problem. For part A, there was a 
significant relationship between curriculum and correct answers (χ2 = 6.5363, p < 0.040). That 
is, a significantly larger percentage of the CMP students had correct answers than the non-
CMP students.  For parts B, C, D, and E, there were no significant relationships between 
curriculum and correct answers. For each of the five parts of the problem, Table 1 provides 
the percentage of students with correct answers in that part. Note that Table 1 shows a 
considerable decreasing trend in the number of students who found a correct solution from 
part A to part E. 

 
 Doorbell Problem Part 
Curriculum A B C D E 
CMP (n = 321) 80.1 38.6 27.7 18.1 7.5 
Non-CMP (n = 212) 74.5 35.4 27.4 16.0 5.2 

Table 1 
Percentages of CMP and non-CMP students who correctly solved each part of the Doorbell Problem 

 
Concrete and Abstract Solution Strategies 

Focusing specifically on the solution strategies of those students who provided correct 
solutions for parts of the doorbell problem, the results were mixed. For part A (see Table 2), 
67.3% of CMP students (n = 257) and 63.9% of non-CMP students (n = 158) used a concrete 
strategy to find the correct answer, whereas 26.1% of CMP students and 27.8% of non-CMP 
students abstracted the problem to an algebraic formula. There were no significant differences 
in proportion between CMP and non-CMP students for each strategy. 

However, some differences in strategy use arose between the two groups as well. For 
part B (see Table 2), 73.4% of CMP students (n=124) and 60% of non-CMP students (n=75) 
abstracted the problem to an algebraic formula to find the correct solution, whereas 17.7% of 
CMP students and 24.0% of non-CMP students used a concrete strategy. A significantly 
greater proportion of CMP students used the abstract strategy than did the non-CMP students 
(z = 1.97, p < 0.050), but there was no significant difference in proportion between CMP and 
non-CMP students for the concrete strategy. 
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For part C (see Table 2), 71.9% of CMP students (n=89) and 67.2% of non-CMP students 
(n=58) abstracted the problem to an algebraic formula, whereas 7.9% of CMP students and 
19.0% of non-CMP students used concrete strategies to find a correct solution. A significantly 
greater proportion of non-CMP students used the concrete strategy than did the CMP students 
(z = -2.27, p < 0.025), but there was no significant difference in proportion between CMP and 
non-CMP students for the abstract strategy. 
 
    Type of strategy (%) 

Problem part  N Abstract Concrete Unidentified None 
A        
 CMP  257 26.1 67.3 3.5 3.1 
 Non-CMP  158 27.8 63.9 1.9 6.3 
B        
 CMP  124 73.4 17.7 3.2 5.6 
 Non-CMP  75 60.0 24.0 4.0 12.0 
C        
 CMP  58 71.9 7.9 9.0 11.2 
 Non-CMP  34 67.2 19.0 5.2 8.6 
D        
 CMP  58 100.0 0.0 0.0 0.0 
 Non-CMP  34 100.0 0.0 0.0 0.0 
E        
 CMP  24 62.5 29.2 4.2 4.2 
 Non-CMP  11 45.5 36.4 0.0 18.2 

Table 2: 
Percentages of CMP and non-CMP students who used each type of strategy to correctly answer parts 

of the doorbell problem 

 
For part D, almost every student who provided a correct solution responded in nearly 

the same way. All of the 34 non-CMP students and 54 out of 58 CMP students who correctly 
answered this part generated an algebraic abstraction and provided a mathematical formula. 
The remaining four CMP students wrote out a verbal description of the mathematical formula, 
which would still require them to have first abstracted the relationships before translating 
those relationships into written form.   

Part E seemed to be a challenging question for both the CMP and non-CMP students. 
Only 24 CMP students and 11 non-CMP students provided a correct solution to this part of 
the doorbell problem. Given these small sample sizes, although there were noticeable group 
differences in raw percentages of students using algebraic and concrete strategies, with a 
greater proportion of CMP students than of non-CMP students using algebraic strategies, 
these differences were not statistically significant.  

 
 

Discussion 
As part of a larger longitudinal study of curricular effect on mathematics learning, the 

results we have presented above provide a useful perspective on the potential long-term 
impacts of reform mathematics curricula on students’ mathematical thinking and problem 
solving. Although we have presented data from only one open-ended task, the results suggest 
that high school students who used the CMP curriculum in middle school were more 
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successful than their peers who used more traditional middle-school curricula at solving the 
doorbell problem and explaining their solution strategies. This result aligns with those 
obtained when these students were still in middle school (CAI, et al., 2011). The result is also 
consistent with our previous findings using problem posing as measure of curricular effect 
(CAI et al., 2013). Thus, it would appear that the CMP students’ problem-solving gains 
persist well into high school.  

The retention of these gains over longer time intervals also parallels the findings from 
research on the effectiveness of problem-based learning (PBL) in medical education 
(HMELO-SILVER, 2004). In that context, medical students trained using a PBL approach 
performed better than non-PBL students on conceptual understanding and problem-solving 
ability even when assessed at a later time. In a similar fashion, the CMP students in the LieCal 
project experienced problem-based instruction that focused on developing students’ 
conceptual understanding and problem solving abilities. 

In addition, our analysis of the strategies used by the students in this study suggests 
that the CMP students who correctly solved the parts of an open-ended task were somewhat 
more likely to make generalizations. This appears to reflect the emphasis in the CMP 
curriculum on relationships between quantities (i.e., the functional approach). The ability to 
abstract algebraic relationships from real-world situations appears to also have persisted in the 
CMP students. 

Note that for this analysis, we focused on the strategies of students who correctly 
answered one or more parts of the doorbell problem. We did not consider the strategies of 
students who failed to provide correct answers. Future work will include additional analyses 
to probe the strategies of students who provided incorrect answers to the doorbell problem 
parts, as well as analyses of student response to other open-ended problems.  
 
 
Conclusion 
 Mathematical problem solving continues to be a key feature of mathematics curricula, 
and consequently a focus of mathematics education research.  As we noted at the beginning of 
this paper, research on mathematical problem solving has pursued many different aspects, 
including the cognitive processes of problem solving, the teaching of problem solving, 
components of the problem-solving process including problem posing, mathematical 
modeling, and the use of problem solving and posing as assessments of students’ 
mathematical learning. The study we have reported in this paper stems from this final line of 
research into problem solving as assessment. We have explored how students’ strategies when 
solving an open-ended problem can be used to detect the differential effects of curricula that 
are more or less problem-based.  This study is part of the large LieCal Project (CAI, 2014). 

The LieCal Project was designed to characterize the differential effects of a problem-
based curriculum, CMP, and more traditional middle-school mathematics curricula. Through 
this longitudinal study of curricular effect, we have found that CMP students show greater 
growth than their non-CMP counterparts on open-ended tasks that assess conceptual 
understanding and problem solving, while maintaining similar growth through middle school 
on computation and equation solving skills. Following these students into their high school 
years, we have found consistent differences between the former CMP and non-CMP students 
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that appear to reflect the different emphases of the CMP and non-CMP curricula. As a 
research finding, this continued curricular effect is particularly notable, as it passes beyond 
the grade band in which students encountered the curricula.  

Fundamentally, it is important to assess students’ mathematical learning using diverse 
tasks that reflect different aspects of that learning. In order to measure curricular effect more 
completely, one must attend to conceptual understanding and problem solving as well as 
procedural skill and fluency. In particular, for curricula that are designed to be problem based, 
it is critical to find ways to measure how students’ problem-solving capacities develop over 
time. Here, we have shown that an analysis of problem-solving strategies using students’ 
responses to an open-ended problem can indeed reflect differences in curricular effect, not 
only in the short term, but also longitudinally as students progress through their schooling. 
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Appendix 
Sally is having a party.   
 The first time the doorbell rings, 1 guest enters. 
 The second time the doorbell rings, 3 guests enter.    
 The third time the doorbell rings, 5 guests enter.   
 The fourth time the doorbell rings, 7 guests enter. 
Keep going in the same way.  On the next ring a group enters that has 2 more persons than the group 
that entered on the previous ring. 
A. How many guests will enter on the 10th ring? Explain or show how you found your answer. 
B. How many guests will enter on the 100th ring? Explain or show how you found your answer. 
C. 299 guests entered on one of the rings.  What ring was it? Explain or show how you found your 
answer. 
D. How many guests will enter on the nth ring? Show or explain how you found your answer. 
E. If we count all of the guests who entered on the first 100 rings, how many would we get in total? 
Show or explain how you found your answer. 
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