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ABSTRACT
In Integral Calculus the classic problem is the determination of the area under the curve, when said region is not 
expressible in terms of elementary figures. This translates into a multiplicity of problems and exercises that are pre-
sented to students in a Calculus course. This article presents a useful problem for Mathematics Education, derived 
from a generalized integral operator, for this we define what we understand by an integrable function in this gene-
ralized sense, and the geometric interpretation of a generalized definite integral is presented. The interesting thing 
about this generalization is that said geometric interpretation is similar to the geometric interpretation of the clas-
sical Riemann integral, but not in the xy plane, but in the Ty plane, where T is the kernel of the generalized integral.
Keywords: Problems solving; Integral calculus; Area under the curve.

RESUMO
o Cálculo Integral, o problema clássico é a determinação da área sob a curva, quando essa região não pode ser 
expressa em termos de figuras elementares. Isso se traduz em uma multiplicidade de problemas e exercícios apre-
sentados aos alunos em um curso de Cálculo. Este artigo apresenta um problema útil para a Educação Matemática, 
derivado de um operador integral generalizado. Para isso, definimos o que entendemos por uma função integrável 
neste sentido generalizado, e a interpretação geométrica de uma integral definida generalizada é apresentada. O 
interessante dessa generalização é que a interpretação geométrica é semelhante à interpretação geométrica da 
integral clássica de Riemann, mas não no plano xy, e sim no plano Ty, onde T é o núcleo da integral generalizada.
Palavras-chave: Resolução de problemas; Cálculo integral; Área sob a curva.

RESUMEN
En Cálculo Integral, el problema clásico es la determinación del área bajo la curva, cuando dicha región no puede 
expresarse en términos de figuras elementales. Esto se traduce en una multiplicidad de problemas y ejercicios que 
se presentan a los estudiantes en un curso de Cálculo. Este artículo presenta un problema útil para la Educación Ma-
temática, derivado de un operador integral generalizado. Para esto, definimos lo que entendemos por una función 
integrable en este sentido generalizado, y se presenta la interpretación geométrica de una integral definida gene-
ralizada. Lo interesante de esta generalización es que dicha interpretación geométrica es similar a la interpretación 
geométrica de la integral clásica de Riemann, pero no en el plano xy, sino en el plano Ty, donde T es el núcleo de la 
integral generalizada.
Palabras clave: Resolución de problemas; Cálculo integral; Área bajo la curva.

1	 E-mail: jnapoles@exa.unne.edu.ar
2	 E-mail: maria.quevedo@unimilitar.edu.co

A
rt

ig
os

 |
 D

os
si

ê

https://doi.org/10.37084/REMATEC.1980-3141.2024.n52.e2024005.id732
https://orcid.org/0000-0003-2470-1090
https://orcid.org/0000-0002-4137-7408


Problems solving in the integral calculus and the determination of the area under the curve

Revista de Matemática, Ensino e Cultura–REMATEC, Belém/PA, n. 52, e2024005, 20242

INTRODUCTION

Problem Solving is probably one of the most developed trends in the last forty years 
and this development has been carried out in multiple directions: history and philosophy 
of Mathematics, constructivism, social constructivism, ethnomathematics, ... among others 
(readers interested in these various addresses can consult [41]).

Many researchers and potential employers have pointed out that school does not 
provide adequate attention to the understanding and skills that are necessary beyond scho-
ol. In particular, the latter have pointed out that they need graduate students to be able to 
interpret and work with complex systems, to communicate and function with various spe-
cialists and to be able to continually adapt to new technologies [24].

One of the most fruitful mathematical branches for Problem Solving is Infinitesimal 
Calculus (Differential and Integral, in particular). The current division, which includes diffe-
rential equations in addition to the previous ones, for example, has been a product of the 
historical development of Mathematics, where internal and external factors have led to the 
panorama we know today (see [17]). The differential and integral calculus seen from the ge-
ometric intuition can be observed in the concepts of Antiphon and Brison in their attempt 
to square the circle in order to determine its area and figures delimited by curves (area un-
der the curve); this being the starting point for various mathematicians who formalized and 
developed the method such as Fermat, Newton, Leibniz, Cauchy, until reaching Weierstrass 
who rewrites the concepts and uses the known connotation found in current texts.

In particular, this development in the 18th century meant that mathematicians be-
gan to handle the current infinity with ease, and the curious thing is that this growth in the 
concepts of limit and convergence rests ultimately on the formalization of real numbers that 
are not he had even Peano and Cantor (see [36]). Interested readers can consult ([3, 5]) where 
a broad overview of the treatment of infinity in both mathematical research and Mathema-
tics Education is shown. In fact, the logical and philosophical foundation of the differential 
and integral calculus was objectively impossible on the basis of the concepts on which they 
appeared and that is why the efforts of Newton, Leibniz, Lagrange and others, until the very 
beginning of the 19th century, ended in the failure. Let’s point out the main shortcomings, 
apart from the lack of the concept of numerical domain and real numbers in particular that 
we already pointed out (see [21, 28, 39]):

Incorrect understanding of the concept of differential: In Leibniz, L’Hospital, Euler 
and other mathematicians of the 18th century, the concept of differential was confused in 
increment. A sufficiently correct approximation of the concept of differential was given only 
by Lagrange (1765).

Insufficient understanding of the concept of function: In fact, until the end of the 19th 
century, mathematicians, starting from mechanical and geometric intuition, understood by 
foundation only the analytical functions represented by a certain formula (in some cases 
infinite, as in Fourier’s considerations linked to his theory of heat). Only with the appearance 
of discontinuous functions in practical problems did mathematicians pay attention to the 
logical formation of the concept of function (see last section of this lecture for more details).
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Absence of a clear concept of limit: Newton’s followers: Maclaurin, Taylor, Wallis and 
others, had a long discussion about whether or not the variable reaches the limit. This pro-
blem was not easy, precisely, because there was no precise definition of a limit and it was 
only determined by mechanical and geometric reasoning. This insufficiency remained until 
Cauchy (1823).

The concept of functional continuity was intuitive: This is explained because the ma-
thematicians of the 18th century considered all functions continuous and therefore did not 
have the need to specify this concept. Only at the beginning of the 19th century did people 
begin to think about this problem (other details can be found in the last section of this lec-
ture).

Fuzzy concept of definite integral: Related above all to the absence of an existence 
theorem. For example, it was considered that the Newton-Leibniz formula had a universal 
meaning, that is, it was valid for all functions and under all conditions. The efforts at the 
precision of the concept made by Lacroix, Poisson and Cauchy brought to the fore the con-
cept of limit and continuity. But the problem of the definite integral only found a complete 
answer until the end of the 19th century in the works of Lebesgue.

The Integral Calculus is a mathematical area with so many ramifications and appli-
cations, that the sole intention of enumerating them makes the task practically impossible.

In this work we present a mathematical theoretical problem that has its impact on 
Mathematics Education, linked to the Resolution of Problems of the Integral Calculus. To 
do this, after placing the mathematical problem in its historical context, we point out some 
relevant contact points for Mathematics Education.

AN INTERLUDE ON PROBLEMS AND PROBLEM SOLVING

What is a problem? It is a good question, very difficult to answer, that is why we prefer 
to characterize what is a problem for us.

We can characterize a problem as a situation in which:

•	 There is a person interested in solving it (the solver).

•	 There is an initial situation (the current one) and a final one (where we want to get to 
when the problem is solved).

•	 The path to go from the initial situation to the final one is unknown.

What is a mathematical problem? Let’s ask Chatgpt about it and seewhat he answers.

A mathematical problem is a question or situation that is addressed using mathe-
matical principles and methods to find a solution or better understand the phenomenon 
in question. These problems can arise in a variety of areas, from physics and engineering to 
economics and biology, and generally involve the formulation of a clear question that requi-
res mathematical reasoning to solve.
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Mathematical problems can vary widely in complexity and focus. Some common 
examples include:

•	 Optimization problems: Determine the best possible solution under certain constraints, 
such as maximizing profits or minimizing costs.\\

•	 Differential equation problems: Find functions that satisfy an equation involving deri-
vatives.

•	 Geometry problems: Solve problems related to geometric shapes and figures, such as 
calculating areas, volumes or distances.\\

•	 Probability and statistics problems: Analyze data and predict results based on probabi-
listic models.

•	 Number theory problems: Investigate properties of integers and numerical patterns.

Mathematical problems often require specific skills such as logical reasoning, the 
ability to formulate abstract models, the use of advanced mathematical techniques, and 
sometimes creativity to find innovative solutions. Solving mathematical problems not only 
expands our theoretical understanding, but also has significant practical applications in 
science, technology and engineering.

Specifically, as it could not be otherwise, Chatgpt answers what we already knew: a 
mathematical problem must be formulated and solved in the corresponding mathematical 
categories.

In some previous works we have referred to the role of mathematical problems in the 
development of Mathematics and its impact on Mathematics Education (see [10, 29, 30, 32, 
33, 34]).

We know that the area problem is to definite integrals, what the tangent and rate of 
change problem is to derivatives.

Accumulation (or net change) problems are problems in which the rate of change of 
a quantity is given and we are asked to calculate the value of the quantity accumulated over 
time. These problems are solved using definite integrals. Derivatives are useful when we are 
given a quantity and asked about its rate, while integrals are useful when we are given a rate 
and asked about the quantity.

The applied problems are common in both differential and integral calculus. When 
we are presented with a problem, we must decide whether the solution involves derivatives 
or integrals. Of course, making the wrong decision will result in the wrong answer. 

Problems and their resolution, linked to the defined integrations, have been studied 
in various works, from different points of view (see [1, 2, 6, 22]). Here we will approach it from 
the point of view of Mathematics, which distinguishes us from previous research.
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A NEW INTEGRAL OPERATOR

We will assume that the fundamentals of the Riemann Integral are known by the at-
tendees. In particular we will deal with real integral operators defined on . 

One of the first operators that can be called fractional is that of  Riemann-Liouville 
fractional derivatives of order , defined by (see [13]).

Definition 1. 

Let . The right and life side Riemann-Liouville 
fractional integrals of order  are defined by

                       (1)

and

                       (2)

and their corresponding differential operators are given by

Other definitions of fractional operators are as follows.

Definition 2. 

Let . The right and life side Hadamard fractio-
nal integrals of order  with  are defined by

                       (3)

and

                       (4)

Hadamard differential operators are given by the following expressions.
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In [18], the author introduced new fractional integral operators, called the Katugam-
pola fractional integrals, in the following way: 

Definition 3. 

Let  is an integrable function, and  
and  two fixed real numbers. The right and life side Katugampola fractional integrals of 
order  are defined by

                       (5)

and

                       (6)

In [19], it appeared a generalization to the Riemann-Liouville and Hadamard fractio-
nal derivatives, called the Katugampola fractional derivatives:

The relation between these two fractional operators is the following:

Definition 4. 

Let  be an interval ,  and, . The generalized integral operator 
, right and , left, is defined for every locally integrable function  on  as

                       (7)

and

                       (8)
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Definition 5. 

The lateral derivative operators (right and left) in the case of our generalized integral, 
are

                       (9)

similarly to the left

Where  is the Generalized Derivative defined in [35] (see also [43])

Definition 6. 

Given a function . Then the N-derivative of  of order  is defined 
by 

                       (10)

for all ,  being  is some function. Here we will use some cases 
of  defined in function of  the classic definition of

Mittag-Leffler function with . Also we consider  is the 
k-nth term of .

If  is -differentiable in some , and  exists, then define 

, note that if  is differentiable, then  

where  is the ordinary derivative.

The original function  was defined and studied by Mittag-Leffler in 
the year 1903, that is, a uniparameter function (see [25, 26]). It is a

direct generalization of the exponential function. Wiman proposed and studied a 
generalization of the role of Mittag-Leffler, who we’ll call it the Mittag-Leffler function with 
two parameters  (see [42]), Agarwal in 1953 and Humbert and Agarwal in 1953, also 
made contributions to the final formalization of this function.

It is easy to see that the case of the  operator defined above contains, as particular 
cases, the integral operators obtained from conformable and non-conformable local deri-
vatives. However, we will see that it goes much further by containing the cases listed at the 
beginning of the work. So, we have

1) If , from (7) we have the right 
side Riemann-Liouville fractional integrals , similarly from (8) we obtain the left 
derivative of Riemann-Liouville. Then its corresponding right differential operator is

,
analogously we obtain the left.
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2) With , we obtain the 
right Hadamard integral from (7), the left Hadamard integral is obtained similarly from (8). 
The right derivative is

in a similar way we can obtain the left

3) The right Katugampola integral is obtained from (7) making

analogously for the left fractional integral. In this case, the right derivative is

and we can obtain the left derivative in the same way.

4) The solution of equation  called Riesz potential, is given 

by the expression , where  is a constant (see [9, 15, 27]). Ob-

viously, this solution can be expressed in terms of the operator (7) very easily.

5) It is clear then, that from our definition, new extensions and generalizations of 
known integral operators can be defined. For example, in KMS presented the definition of 
fractional integral of  with respecto to  of following way. Let  be an increa-
sing and positive monotone function on  having a continuous derivative  on . 
The left-sided fractional integral of  with respect to the function  on  of order  
is defined by

                       (11)

similarly the right lateral derivative is defined as well

                       (12)

It will be very easy for the reader to build the kernel T in this case.

6) A k-analogue of above definition is defined in [23] (also see [11]), under the same 
assumptions on function g

                       (13)

similarly the right lateral derivative is defined as well

                       (14)
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The corresponding differential operator is also very easy to obtain.

7) We can define the function space  as the set of functions over  such 
that .

TOWARDS A GEOMETRIC INTERPRETATION OF THE GENERALIZED 
INTEGRAL

Definition 7.

Given a closed interval I = [a, b], a partition of I is any finite strictly increasing se-
quence of points P = x0, x1, ..., xn-1, xn such that a = x0 and b = xn. The norm of the 
partition P is defined by

                         (15)
If f is a function whose domain contains the closed interval I and f is bounded on the 

interval I, we know that f has both a least upper bound and a greatest lower bound on I as 
well as on each interval of any subdivision of I.

By the absolute continuity of  the partition P on [a,b] generates other parti-

tion PT on  with  and  and 

denoting by  the norm of this new partition .

Let’s define , and , thus we can 
state our criterion of integrability as follows.

Definition 8.

The function f definied and bounded on [a, b] is said to be N-integrable (or integrable 
in a general sense) if for all ε > 0 there is a partition PT such that
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|S(f, T, α) - s(f, T, α)| < ε,                        (16)

when

                        (17)

Remark 9.

A sufficient condition to guarantee the convergence of (16) is the Cauchy Mayorante 
Criterion, that is, that the inequality is satisfied if there is a numeric series aj such that

|S(f, T, α) - s(f, T, α)| < aj,                        (18)

and . This is possible, for example, if T besides being uniformly continuous 

is strictly decreasing.

The geometric interpretation of the integral  is as before, the area under 
the curve, but not with respect to [a,b], if not, with respect to the new interval generated by 

, the area is represented by the letter A in the previous graph. What we want to highlight 
is that, even when we work with the new integral operators, the geometric interpretation 
remains the same!

CONCLUSIONS

We know that problem solving is very important in the curriculum at any level of 
education, particularly at the higher level. Problem solving is a process of educational ob-
jectives that can be seen from the curricular aspect ([40]). Problem solving is a process of 
applying previously obtained information to new information, for unknown situations ([20]). 
The application of problem solving requires skills such as critical thinking, so that when stu-
dents master a problem, they can make plans to solve them and be able to find the correct 
answer when faced with an unknown situation ([7]).

Differential and integral calculus is present in the curricula of university degrees in 
exact and natural sciences, engineering, technology and related professorships. Reflections 
and discussions on what, how and what to teach in Calculus have stimulated his study from 
different perspectives. For instance, in the study of mathematical thought processes, visu-
alization has been a growing area of development in recent decades. Much of this research 
points to visual reasoning as a powerful and alternative resource for students when doing 
math (see [4, 16, 37, 44]). We consider that in this last direction this work can contribute 
resources, using a table similar to y related to the fundamentals of the exhaution method), 
using different kernels, remember that if T ≡ 1 we have the classic Riemann Integral.



Juan E. Nápoles Valdés; Maria Nubia Quevedo

Revista de Matemática, Ensino e Cultura–REMATEC, Belém/PA, n. 52, e2024005, 2024 11

Besides it is clear that, under the Definitions 4 and 5 many of the results reported 
in the literature, for the derivatives and integrals presented above as particular cases, can 
be extended without much difficulty. On the other hand, we have shown that any integral 
operator, included in Definition 3, can be formalized with a scheme similar to that of the 
Riemann Integral, that is, by means of higher and lower sums.

For all of the above, we want to emphasize that problem solving is essential in lear-
ning integral calculus because it allows students to apply theoretical concepts in practical 
and real situations. When faced with problems, students develop critical thinking skills, lo-
gical reasoning, and the ability to find creative solutions. In addition, problem solving helps 
to consolidate the knowledge acquired, identify possible errors and improve the understan-
ding of mathematical concepts. In summary, constant practice of solving problems in inte-
gral calculus is essential for the development of strong mathematical skills and preparation 
to meet academic and professional challenges.

In particular, we believe that the problem presented in this manuscript would help 
consolidate both theoretical knowledge and the geometric interpretation of the definite 
integral, seen as the area under the curve.
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